Imaginary Number

⸺ by Charles Iliya Krempeaux

In , an imaginary number is a s or s multiplied to the , which is denoted by i.

Example Imaginary Numbers

Some examples of complex numbers include:

i

-i

2i

-2i

2.3i

-2.3i

πi

-πi

i√5

-i√5

Numbers such as —

2i + 3

i - π

π - i

π - i√5

— are not called imaginary numbers, but are instead called s.

operator j

With imaginary numbers, the of negative one is usually denoted as i. I.e., —

i = √-1

This creates a problem if you are dealing with — where i (and I) is commonly used to denote .

In this situation j (rather than i) is used to denote the . I.e., —

i = √-1

This is often called operator j.

This should not be confused with the use of j from s. They are not the same.

See Also